1

(a) Brown ppt/solid

Gas evolved/effervescence

 $2[Fe(H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2Fe(H_2O)_3(OH)_3 + 3CO_2 + 3H_2O$ Must be stated, Allow CO_2 evolved. Do not allow CO_2 alone

Correct iron product (1) allow $Fe(OH)_3$ and in equation

Balanced equation (1)

(b) White ppt/solid

Colourless Solution

Only award M2 if M1 given or initial ppt mentioned

$$[AI(H_2O)_6]^{3+} + 3OH^- \rightarrow AI(H_2O)_3(OH)_3 + 3H_2O$$

 $AIlow [AI(H_2O)_6]^{3+} + 3OH^- \rightarrow AI(OH)_3 + 6H_2O$

 $AI(H_2O)_3(OH)_3 + 3OH^- \rightarrow [AI(OH)_6]^{3-} + 3H_2O$ Allow formation of $[AI(H_2O)_{6-x}(OH)_x]^{(x-3)-}$ where x = 4,5,6Allow formation of correct product from $[AI(H_2O)_6]^{3+}$

(c) Blue ppt/solid

(Dissolves to give a) deep blue <u>solution</u>

Only award M2 if M1 given or initial ppt mentioned

$$\begin{split} [\text{Cu}(\text{H}_2\text{O})_6]^{2+} + 2\text{NH}_3 &\to \text{Cu}(\text{H}_2\text{O})_4(\text{OH})_2 + 2\text{NH}_4^+ \\ &\quad \textit{Allow } [\text{Cu}(H_2\text{O})_6]^{2+} + 2\text{NH}_3 \to \text{Cu}(\text{OH})_2 + 2\text{NH}_4^+ + 4\text{H}_2\text{O} \\ &\quad \textit{Allow two equations: NH}_3 + \text{H}_2\text{O} \to \text{NH}_4^+ + \text{OH}^- \\ &\quad \textit{then } [\text{Cu}(H_2\text{O})_6]^{2+} + 2\text{OH}^- \to \text{Cu}(\text{OH})_2 + 4\text{H}_2\text{O} \text{ etc} \end{split}$$

$$\begin{split} Cu(H_2O)_4(OH)_2 + 4NH_3 &\rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 2OH^- + 2H_2O \\ &\quad Allow \ [Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 4H_2O \end{split}$$

1

1

2

1

1

1

1

1

1

1

1

(d) Green/yellow solution

 $[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$

[14]

1

1

1

1

1

1

1

1

1

1

1

1

1

(a) oxidation state of N in $Cu(NO_3)_2$: +5;

oxidation state of N in NO_2 : +4;

oxidation product: oxygen;

(b) copper-containing species: $[Cu(H_2O)_6]^{2+}$;

shape: octahedral;

(c) (i) precipitate B: $Cu(H_2O)_4(OH)_2$ or $Cu(OH)_2$ or name;

equation: $[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^+$

OR

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

and

$$[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(H_2O)_4(OH)_2 + 2H_2O;$$

(ii) NH₃ accepts a proton;

(d) (i) identity: $[Cu(NH_3)_4(H_2O)_2]^{2+}$;

colour: deep blue;

equation:

 $Cu(H_2O)_4(OH)_2 + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2O + 2OH^-;$

		(ii) NH ₃ is an electron pair donor;	1	
	(e)	identity: [CuCl ₄] ²⁻ ;	1	
		colour: yellow-green;	1	
		shape: tetrahedral;	1	
	(f)	(i) $Is^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$;	1	
		(ii) role of Cu: a reducing agent;	1	[17]
3	(a)	Iron	1	
		Heterogeneous; catalyst in a different phase from that of the reactants		
		Poison; a sulphur compound (allow sulphur)	1	
		Poison strongly adsorbed onto active sites/ blocked	1	
		Poison not desorbed or reactants not adsorbed or		

catalyst surface area reduced

1

Pale green solution 1 (b) Green precipitate formed 1 Insoluble in excess ammonia 1 Equation: e.g. $[Fe(H_2O)_6]^{2+} + 2NH_3 \rightarrow [Fe(H_2O)_4(OH)_2] + 2NH_4^+$ Species 1 Balance 1 Allow equations with H₂O and OH - if reaction of H₂O with

NH₃ also given

Max 4

[9]